排序算法


分类

  • 内部排序 :数据记录在内存中进行排序。
  • 外部排序:因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序希尔排序选择排序冒泡排序归并排序快速排序堆排序基数排序

稳定:冒泡排序、插入排序、归并排序
不稳定:快速排序、希尔排序、选择排序、堆排序

图片名词解释:

  • n:数据规模
  • k:“桶” 的个数
  • In-place:占用常数内存,不占用额外内存
  • Out-place:占用额外内存

术语说明

  • 稳定:如果 A 原本在 B 前面,而 A=B,排序之后 A 仍然在 B 的前面。
  • 不稳定:如果 A 原本在 B 的前面,而 A=B,排序之后 A 可能会出现在 B 的后面。
  • 内排序:所有排序操作都在内存中完成。
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。
  • 时间复杂度: 定性描述一个算法执行所耗费的时间。
  • 空间复杂度:定性描述一个算法执行所需内存的大小

冒泡排序 (Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地遍历要排序的序列,依次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历序列的工作是重复地进行直到没有再需要交换为止,此时说明该序列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢 “浮” 到数列的顶端。

算法步骤

  1. 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  3. 针对所有的元素重复以上的步骤,除了最后一个;
  4. 重复步骤 1~3,直到排序完成。

图解算法

算法分析

  • 稳定性:稳定
  • 时间复杂度 :最佳:O(n) ,最差:O(n2), 平均:O(n2)
  • 空间复杂度 :O(1)
public static void bubbleSort(int[] arr) {  
  
    int n = arr.length;  
    boolean swapped = true;  
  
    for (int i = 0; i < n - 1 && swapped; i++) {  
        swapped = false;  
        for (int j = 0; j < n - i - 1; j++) {  
            if (arr[j] > arr[j + 1]) {  
                // 交换相邻元素  
                int temp = arr[j];  
                arr[j] = arr[j + 1];  
                arr[j + 1] = temp;  
                swapped = true;  
            }  
        }  
    }  
  
}

选择排序 (Selection Sort)

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。

它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第 2 步,直到所有元素均排序完毕。

图解算法

算法分析

  • 稳定性:不稳定
  • 时间复杂度 :最佳:O(n2) ,最差:O(n2), 平均:O(n2)
  • 空间复杂度 :O(1)
public static void sort(int[] arr) {  
    for (int i = 0; i < arr.length - 1; ++i) {  
        int minIdx = i;  
        // 在数组区间[i+1,j]中找出一个最小(比arr[i]还小的)的,记录其下标为minIdx  
        for (int j = arr.length - 1; j > i; --j) {  
            if (arr[j] < arr[minIdx]) {  
                minIdx = j;  
            }  
        }  
        // 当minIdx发生变动,证明数组区间[i+1,j]中有比arr[i]小的值,进行交换  
        if (minIdx != i) {  
            // 交换数组arr中下标为i和minIdx的值  
            swap(arr, i, minIdx);  
        }  
    }  
}  
  
public static void swap(int[] arr, int i, int j) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}

插入排序 (Insertion Sort)

插入排序是一种简单直观的排序算法。

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。扑克牌抓牌

算法步骤

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤 2~5。

图解算法

算法分析

  • 稳定性:稳定
  • 时间复杂度 :最佳:O(n) ,最差:O(n2), 平均:O(n2)
  • 空间复杂度 :O(1)
public static void sort(int[] arr) {  
    for (int i = 0; i < arr.length - 1; ++i) {  
        // 每趟插入排序前,数组区间[0,i]经过上一趟插入排序处理后,是有序的  
        for (int j = i + 1; j > 0; --j) {  
            // 数组元素交换  
            if (arr[j - 1] > arr[j]){  
                swap(arr, j - 1, j);  
            }  
        }  
    }  
}  
  
public static void swap(int[] arr, int i, int j) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}

希尔排序 (Shell Sort)

希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为递减增量排序算法

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录 “基本有序” 时,再对全体记录进行依次直接插入排序。

算法步骤

我们来看下希尔排序的基本步骤,在此我们选择增量 gap=length/2,缩小增量继续以 gap = gap/2 的方式,这种增量选择我们可以用一个序列来表示,{n/2, (n/2)/2, ..., 1},称为增量序列

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列 {t1, t2, …, tk},其中 (ti>tj, i<j, tk=1)
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 t,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

图解算法

算法分析

  • 稳定性:不稳定
  • 时间复杂度 :最佳:O(nlogn), 最差:O(n2) 平均:O(nlogn)
  • 空间复杂度O(1)
public static void sort(int[] arr) {  
    int len = arr.length;  
    int incr = len;  
    while(incr > 1){  
        // 每趟希尔排序,都让增量的值折半  
        incr /= 2;  
        for(int i = incr;i < len;++i){  
            if(arr[i] < arr[i - incr]){  
                // 分组插入排序  
                // 当遍历时遇到相对有序,直接进行下一趟排序  
                for(int j = i;j >= incr;j -= incr){  
                    if (arr[j]<arr[j - incr]){  
                        swap(arr,j,j - incr);  
                    }  
                }  
            }  
        }  
    }  
}  
  
public static void swap(int[] arr, int i, int j) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}

归并排序 (Merge Sort)

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为 2 路归并。

算法步骤

归并排序算法是一个递归过程,边界条件为当输入序列仅有一个元素时,直接返回,具体过程如下:

  1. 如果输入内只有一个元素,则直接返回,否则将长度为 n 的输入序列分成两个长度为 n/2 的子序列;
  2. 分别对这两个子序列进行归并排序,使子序列变为有序状态;
  3. 设定两个指针,分别指向两个已经排序子序列的起始位置;
  4. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间(用于存放排序结果),并移动指针到下一位置;
  5. 重复步骤 3 ~4 直到某一指针达到序列尾;
  6. 将另一序列剩下的所有元素直接复制到合并序列尾。

图解算法

算法分析

  • 稳定性:稳定
  • 时间复杂度 :最佳:O(nlogn), 最差:O(nlogn), 平均:O(nlogn)
  • 空间复杂度 :O(n)
//拆分  
private static void sort(int[] arr, int L, int R) {  
    if (L < R) {  
        int mid = L + ((R - L) >> 1);  
        sort(arr, L, mid);  
        sort(arr, mid + 1, R);  
        merge(arr, L, mid, R);  
    }  
}  
  
//合并  
private static void merge(int[] arr, int L, int mid, int R) {  
    int[] tmpArr = new int[R - L + 1];  
    int idx = 0;  
    int i = L, j = mid + 1;  
    // 同时遍历arr数组中[L, mid]和[mid+1, R]两个区间,将较小值放入tmpArr临时数组中  
    while (i <= mid && j <= R) {  
        tmpArr[idx++] = (arr[i] <= arr[j]) ? arr[i++] : arr[j++];  
    }  
    while (i <= mid) tmpArr[idx++] = arr[i++];  
    while (j <= R) tmpArr[idx++] = arr[j++];  
    // 将tmpArr数组中排序完毕的值放回原数组中  
    for (int val : tmpArr) {  
        arr[L++] = val;  
    }  
}

快速排序 (Quick Sort)

快速排序的基本思想:通过一趟排序将待排序列分隔成独立的两部分,其中一部分记录的元素均比另一部分的元素小,则可分别对这两部分子序列继续进行排序,以达到整个序列有序。

算法步骤

快速排序使用分治法策略来把一个序列分为较小和较大的 2 个子序列,然后递回地排序两个子序列。具体算法描述如下:

  1. 从序列中随机挑出一个元素,做为 “基准”(pivot);
  2. 重新排列序列,将所有比基准值小的元素摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个操作结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  3. 递归地把小于基准值元素的子序列和大于基准值元素的子序列进行快速排序。

图解算法

算法分析

  • 稳定性 :不稳定
  • 时间复杂度 :最佳:O(nlogn), 最差:O(nlogn),平均:O(nlogn)
  • 空间复杂度 :O(logn)
private void sort(int[] arr, int L, int R) {  
    // 递归出口为L追上R的时候  
    if (L >= R) return;  
    int i = L, j = R;  
    int key = arr[L];  
    while (i < j) {  
        // 从右边开始,找到第一个小于key的数  
        while (i < j && arr[j] >= key) --j;  
        // 再从左边开始,找到第一个大于key的数  
        while (i < j && arr[i] <= key) ++i;  
        swap(arr, i, j);  
    }  
    // 将基准值放在划分数组大小的中间轴上  
    swap(arr, L, i);  
    // 递归进行排序  
    sort(arr, L, i);  
    sort(arr, i + 1, R);  
}  
  
public void swap(int[] arr, int i, int j) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}

堆排序 (Heap Sort)

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点

算法步骤

  1. 将初始待排序列 (R1, R2, ……, Rn) 构建成大顶堆,此堆为初始的无序区;
  2. 将堆顶元素 R[1] 与最后一个元素 R[n] 交换,此时得到新的无序区 (R1, R2, ……, Rn-1) 和新的有序区 (Rn), 且满足 R[1, 2, ……, n-1]<=R[n]
  3. 由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1, R2, ……, Rn-1) 调整为新堆,然后再次将 R [1] 与无序区最后一个元素交换,得到新的无序区 (R1, R2, ……, Rn-2) 和新的有序区 (Rn-1, Rn)。不断重复此过程直到有序区的元素个数为 n-1,则整个排序过程完成。

图解算法

算法分析

  • 稳定性 :不稳定
  • 时间复杂度 :最佳:O(nlogn), 最差:O(nlogn), 平均:O(nlogn)
  • 空间复杂度 :O(1)
//调整堆  
//小结点不断下沉  
private static void heapAdjust(int[] heap, int i, int len) {  
    // 记录传入节点值  
    int tmp = heap[i];  
    // 从i节点的左子节点开始,即i*2+1  
    for (int k = i * 2 + 1; k < len; k = k * 2 + 1) {  
        // 当左子节点小于右子节点,则让父节点与右子节点相比  
        if (k + 1 < len && heap[k] < heap[k + 1]) {  
            ++k;  
        }  
        // 若最大的子节点比传入节点大,则将最大的子节点的位置移到传入节点上  
        if (heap[k] > tmp) {  
            heap[i] = heap[k];  
            i = k;  
        } else {  
            break;  
        }  
    }  
    // 传入节点值放在最终的位置  
    heap[i] = tmp;  
}  
  
public static void sort(int[] arr) {  
    int len = arr.length;  
    // 1. 构建大顶堆  
    for (int i = len / 2 - 1; i >= 0; --i) {  
        // 从第一个非叶子结点从下至上,从右至左调整结构  
        heapAdjust(arr, i, len);  
    }  
    // 2. 每一趟排序,都将大顶堆的堆顶与数组的索引j处的值交换  
    // 索引j最开始指向数组尾部,随着每一趟排序的结束自减,直到指向数组头部  
    for (int j = len - 1; j > 0; --j) {  
        swap(arr, 0, j);  
        heapAdjust(arr, 0, j);  
    }  
}  
  
public static void swap(int[] arr, int i, int j) {  
    int temp = arr[i];  
    arr[i] = arr[j];  
    arr[j] = temp;  
}

计数排序 (Counting Sort)

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数

算法步骤

  1. 找出数组中的最大值 max、最小值 min
  2. 创建一个新数组 C,其长度是 max-min+1,其元素默认值都为 0;
  3. 遍历原数组 A 中的元素 A[i],以 A[i]-min 作为 C 数组的索引,以 A[i] 的值在 A 中元素出现次数作为 C[A[i]-min] 的值;
  4. C 数组变形,新元素的值是该元素与前一个元素值的和,即当 i>1C[i] = C[i] + C[i-1]
  5. 创建结果数组 R,长度和原始数组一样。
  6. 从后向前遍历原始数组 A 中的元素 A[i],使用 A[i] 减去最小值 min 作为索引,在计数数组 C 中找到对应的值 C[A[i]-min]C[A[i]-min]-1 就是 A[i] 在结果数组 R 中的位置,做完上述这些操作,将 count[A[i]-min] 减小 1。

图解算法

算法分析

当输入的元素是 n0k 之间的整数时,它的运行时间是 O(n+k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组 C 的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上 1),这使得计数排序对于数据范围很大的数组,需要大量额外内存空间。

  • 稳定性 :稳定
  • 时间复杂度 :最佳:O(n+k) 最差:O(n+k) 平均:O(n+k)
  • 空间复杂度O(k)

桶排序 (Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量
  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

桶排序的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行。

算法步骤

  1. 设置一个 BucketSize,作为每个桶所能放置多少个不同数值;
  2. 遍历输入数据,并且把数据依次映射到对应的桶里去;
  3. 对每个非空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
  4. 从非空桶里把排好序的数据拼接起来。

图解算法

算法分析

  • 稳定性 :稳定
  • 时间复杂度 :最佳:O(n+k) 最差:O(n²) 平均:O(n+k)
  • 空间复杂度O(k)

基数排序 (Radix Sort)

基数排序也是非比较的排序算法,对元素中的每一位数字进行排序,从最低位开始排序,复杂度为 O(n×k)n 为数组长度,k 为数组中元素的最大的位数;

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

算法步骤

  1. 取得数组中的最大数,并取得位数,即为迭代次数 N(例如:数组中最大数值为 1000,则 N=4);
  2. A 为原始数组,从最低位开始取每个位组成 radix 数组;
  3. radix 进行计数排序(利用计数排序适用于小范围数的特点);
  4. radix 依次赋值给原数组;
  5. 重复 2~4 步骤 N

图解算法

算法分析

  • 稳定性 :稳定
  • 时间复杂度 :最佳:O(n×k) 最差:O(n×k) 平均:O(n×k)
  • 空间复杂度O(n+k)

基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶
  • 计数排序:每个桶只存储单一键值
  • 桶排序:每个桶存储一定范围的数值

文章作者: Aiaa
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Aiaa !
  目录